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ABSTRACT

- / M. Kress proved for a special class of Location-Scale probability distributions there always

exists a probability level for which the Chance Constrained Critical Path (CCCP) remains unchanged

for all probabilities greater than or equal to that value. His chance constrained problem has zero-order

decision rules and individual chance constraints.

This paper extends his results to most of the common probability distributions. >up ,-Cv.'
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Moshe Kress [1] studied the Chance Constrained Critical Path (CCCP) problem with zero 0

order decision rule and individual chance constraints. He proved that for a class of Location-Scale

probability distributions there always exists a probability level for which the CCCP remains unchanged

for all probability values greater than or equal to that level. The purpose of this paper is to extend the

results of [1] to most of the common probability distributions.

The CCCP problem with zero order decision rule and equal minimal probability level can be

formulated as

y.Mmi n U a uo

Pr e j jUi >t Ij N

P (s.t.

j = 1 , 2 , ..., n

where ui's are the start times of the activities. tj, j = 1,2 ..., n, are the durations of activities j's

which are the random variables with marginal distribution function Fj; E ij is the entry in row i, column

j of the node-arc incidence matrix of the activity network.

Let F1
I (f3) = inf ( t" Fj (t)_> 13}

Notice that since the distribution function is right continuous, "inf" can be changed into "min". Now

we can write P(O) into an equivalent deterministic form.
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Min Urn -uo

XEijUi -
; Pl3 s.. i-o

j 1,2, n

The dual problem to P1 (13) is ( x

Max Y_, F j (1xi

j.1

( ,ijXj = ai, i = 0, 1....m

xj 2!O, j =1, 2,..... n

where ao =-1, am = 1, ai= 0, fori = 1,2,..., m-1.

Since D1(3) is a pure network problem, for any given 13 e (0, 1), a basic optimal solution

x*(P) = {xl (), x2 (i3) ... Xn" (3)) of D1 (1) has the property xj* (13) is either 0 or 1, and {j •xj() =

1 ) forms a critical path for the network of DI(1).

Let P = {Pk k = 1, 2, ..., K ) denote the set of all paths from the source to the sink in the

network, and Jk = {J" arc j is in path Pk}. Then the problem P (13)is equivalent to the following

problem.
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Max Y(F;( k)

K

JYk = 1
k.

s.t. Yk - 0

k = ,..., K

Clearly, if k* such that

SF'1(3 MaxFj)

jE J k- ke I k

whereI = {1,2, .... K},

then yk. = 1 , Yi = 0 for i . k* is an optimal solution of p(3), and if we set

x 1 if J Jk"

0 otherwise

x" (1) = { Xl*(P), x2°(3), x3*() ,..., Xn*(O3) } is an optimal solution of problem D1 (1).

Let Vk ([3) =  F(13),

,I FC

jeJk\Jk
n J 

t

H() k k: V403) = Max Vi(O)f

The following theorem gives a sufficient conditon under which the CCCP remains unchanged

for all probabilities greater than or equal to a level 3o.

For the distribution function Fj , denote the support set of Fj (supp (F1)) as the interval

where i= sup ( y: Fi(y) =0)

j= it {y Fj(y)=1)

oI
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Theorem: Assume marginal distribution functions Fj, j = 1, 2, ..., n, are continuous and the density

functions fj > 0, a.e., in supp ( Fj).

Casel: yj < a , for j= 1,2, ... , n.

Ifk* e H (1) , and there exists a 0 < 1 < 1 suchthat

Uk..k(13) < Uk.(l3)

foranyI3E [p ,1] and kE H(1),

then there exists a 03o < 1 such that for any 13 [3o 1]

Vk* (j3) - Vk (13) fork E I

Case 2: y=+o , for j= 1,2,...,n.

(a) If there exists a 0 _ 13 < 1 suchthat k* E H(13)

and U k k()_< Uk.()

forany 0 [E3,1]andkE I.

or,

(b) if k* is such that

lim U >1

for k= I

Then, there exists a 13o < 1 such that for any 3 [13o, 1]

Vk(03) > V(P) for kE I

Proof: Case 1.

Since Fi is a continuous monotone distribution function, fi = Fi' is a Lebesgue measurable

function. Since fj > 0 a.e., 1 /fj = (Fj)' is a Lebesgue measurable function. By the condition of

theorem defining Case 1, Uk.(13) Uk'.k() for any 13 E [, 1] and k E H(1). Therefore, for any

3 [c-, 1] andkE H(1)

0: of 0 Ukk(t)-Uku k(t) dt
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= k(t) -Vk(t) dt

= V k0) -v k) -V ()+ V(10)

By hypothesis Vk (1) = Vk-(1), hence

Vk- (f) ->Vk() for any k E H(1)

If kdH(1), then Vk(1)>Vk(1)-,

and since fj > 0 a.e. in supp (Fj), Fj is a strictly increasing continuous function and so is the sum of

these which is Vk(P). Therefore there exists a k < 1 such that for any 3 E [13k, 1]

Vk* (1) - Vk (5).

Let 0 0=max {1, OkforkE \H(1) <1

Then for 0 E [00, 11, kE I

Vk* (1) -Vk (J )

Case 2.a.

For any P E [5, 11 and k e I

0 Uko.k(t) " Ukk'(t)) dt

= k(t) - Vk(t))dt

b JA

= Vk.(1)-Vk(P)-Vk.(3)+Vk(()

By hypothesis k* e H(P), so we have

vk.(P ) -> vk(P)

Therefore we can choose 0o at least equal to P.

Case 2.b.

lir U'k.k(13)
Since - U'kk.(O) >1



there exists a J3 such that for any f3 e [j3, 1]

U k '.k( ) +

Uk' (1)

that is

Uk-,k(1)-,UkU.( ) k Uk,.()

Hence ef Ukk.(t)dt -f (Ukk(t)-Ukk.(t))dt =fVk-(t)-Vk(t))dt

I p Ip"<V.()V-k-. -k(tU ,k(tk -

Notice that if Y7= 00 and fj > 0 a.e. in supp (fj) there exists a 13 < 1 such that

pifUl k' (t) dt >V()V k(^O ) 16

So, for any 13 >13,

v k.(O) -v k(1) -> 0

Hence we have obtained a 0o which satisfies our requirement.

Remark 1: From the argument of our proof, it is clear that the theorem is also true when the

Fj's satisfy the assumed condition only in a interval of [a, 7j, where a is a certain real value less than 7.

Remark 2: When the set of random variables ti, i = 1, 2, ... , n contains both finite support and

infinite support distribution functions, then we can treat it as we did in the infinite support case.

'B

We are now going to show that the location-scale distribution family which Kress [1] studied

satisfies the hypotheses of our theorem.

I,.
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The Fj, j = 1, 2. n, for the Kress family are location-scale distributions with the same

generating distribution 0, that is,

Fi(x) (J for j= 1,2.... n, where ji are the location and scale parameters of Fj

respectively.

The inverse of a location-scale distribution of a non-negative random variable is

Fj (0) =acj (]) +gIj
-11

where 0 (3) _> 0 is the Oth fractile of the generating distribution 0.

Let Sk= Yaj>O, Mk= lk>O.
j Jk jeJk

! -1

Then Vk(,)=SkO (03)+Mk

and the following corollary is obtained.

CQrojlaIy: Suppose Fj, j = 1, 2, . . ., n, are such location-scale distributions, 0 a non-negative

continuous distribution. I
Cae1. Let Y= i nf (Y) = 1} <oo

If K*E I such that k*E H(1)and

Mk.= max Mj
jr H(1)

Then, for any 0 e [0, 1], k e H(1)

U .., k(0)> Uk,,.()

Case 2. Let =y

If k* E I such that

H - S max S
Ska Sk, forall ke I and Mk*>Mk, forall ke H, where H=(i:S,

A r
then there exists a P such that for 0 e , 1 ,ke H( ) and Uk..(J)_U..( 3) forke I.

Prgf: Case 1. Let kE H(1), then since

Mk' 2! Mk and Vk.(1) = k -1(1) + Mk* - Sk 0 1(1) + Mk = Vk (1),

we have Ska < Sk.
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Therefore Vk.(3)=Sk.(0)) Sh(0) =Vk(3) p

Thatis Uk.,k()_Ukk.() for kE H(1)

Case 2: By hypothesis, we know if k e H

Vk.(J)=Sk.0 (P)+Mk'>SkO (f)+Mk=Vk(3)

that is, Uk.k,(3) Uk,k"(I3) (*)

It k H, then Sk* > Sk. Let .= Sk- -Sk > 0.
S-1 Mk-Mk

Since y ,there is a sctafony 0 (>3)_

-1

Hence, Vk'()=Sk'0 ()+Mk'
-1 -1

=SkO (J3)+10 (P)+Mk. (..)

-Sk0 (U3)+Mk=Vk()
AA

Combining (-) and (*), for 3 [3, 1]

U k.(.) > Uk.k.( 3)

On the other hand, because Sk* > Sk for k E I, we can directly conclude

Vk'.(P) = s.(0" U3) _ sk(" ())- V'(O)

which is equivalent to

U,.k, k U , u'(0)

Q.E.D.

I.q



Consider the project network depicted in Figure 1.

t44

Figure 1

Let tl t2 have distribution U (0, 1)

fIl( 2 .x) 05x:52
113 - densityfunction f3(W)0 otherwise

t4 t5 - density function f4 (X)=f 5() M (2x Oherwise

t7 - density function f6 (X) f7 (xM 3X 0 X:51
0 otherwise

* Then yi ! 2 <

By solving the pure network problem D1 (1), we get the optimal critical paths J1 (0, 2, 1,41

J2 (0, 2, 3, 4,J. See Figure 2.

4 04
0 0

2 3

Figure 2

Since U 1 2 (1)=-+-1=
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the critical path J2 is what we are seeking. By use of the optimal solution corresponding to J2 in D, %.r

(3) and computing its reduced cost, we can get the minimal probability level 3o 0, for which CCCP

remains unchanged for all probability values greater than or equal to it.

Consider the project network depicted in Figure 1 but let ti - (1 -a i) F(x) + a i G(x) where F(x), G(x) are

the distribution functions of N(0,1) and Exp (1) respectively and = 1 i 1,2 ... 7.
i+1

Since the possible critical paths are J1 = {0, 2, 1, 4}, J2 = {0, 2, 3, 4}, J3 = {0, 2, 4}, J4 = {0, 1,4}, we

have

im U2..) >1 fork=1,3,5

So J2 is the desired critical path.

.7%.
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